Generalized Carleson embeddings into weighted outer measure spaces

نویسندگان

چکیده

We prove generalized Carleson embeddings for the continuous wave packet transform from L p ( R , w ) into an outer space over × 0 ∞ 2 < and weight ∈ A / . This work is a weighted extension of corresponding Lebesgue result in [13] generalizes similar [10] The proof this article relies on restriction estimates which are geometric may be independent interest.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reverse Carleson embeddings for model spaces

The classical embedding theorem of Carleson deals with finite positive Borel measures μ on the closed unit disk for which there exists a positive constant c such that ‖f‖L2(μ) ≤ c‖f‖H2 for all f ∈ H, the Hardy space of the unit disk. Lefèvre et al. examined measures μ for which there exists a positive constant c such that ‖f‖L2(μ) ≥ c‖f‖H2 for all f ∈ H. The first type of inequality above was e...

متن کامل

Essential norm estimates of generalized weighted composition operators into weighted type spaces

Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...

متن کامل

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

Generalized Weighted Composition Operators from Weighted Bergman Spaces into Zygmund–type Spaces

The boundedness and the compactness of generalized weighted composition operators from weighted Bergman spaces into Zygmund-type spaces are investigated in this paper. Moreover, we give some estimates for the essential norm of these operators.

متن کامل

Generalized Veronesean embeddings of projective spaces

We classify all embeddings θ : PG(n, q) −→ PG(d, q), with d ≥ n(n+3) 2 , such that θ maps the set of points of each line to a set of coplanar points and such that the image of θ generates PG(d, q). It turns out that d = 1 2n(n+3) and all examples are related to the quadric Veronesean of PG(n, q) in PG(d, q) and its projections from subspaces of PG(d, q) generated by sub-Veroneseans (the point s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2022

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2021.125698